Interactive constraints computer-aided composition
ICMC 2017

Pierre Talbot Carlos Agon  Philippe Esling
(talbot@ircam.fr)

Institute for Research and Coordination in Acoustics/Music (IRCAM)
Université Pierre et Marie Curie (UPMC)

19th October 2017



Computer-aided composition

Goals

Delegating tedious computations to the machine.

Parametrizing the patch with values to quickly try-and-test.

How does the composer interact with the machine?

Mostly visual and dataflow programming languages: OpenMusic,
PureData, Max,. ..

Functional programming languages for the specifics: Lisp mostly.



Dataflow: a patch in OpenMusic

(1/32 1/8 -1/16 -1/4 1/16)

o

s
=

it candom
.

3

°
om-round
e

&
LisR
verse

g,
C)
repeat-n
P
)
mitree
e
e
)
Cl
3

2 ===
T+ Rl
b L




Constraints in computer-aided composition

Constraint programming

Declarative paradigm for solving combinatorial problems.
We state the problem and let the system solve it for us.

Example: pitches must form a decreasing sequence (from highest to
lowest).

Some examples of attempts to add constraints into CAC softwares:
PWConstraints on top of PatchWork: constraints over the pitches,
grouping the pitches together (modelling aspects).

OMCloud on top of OpenMusic is based on a different constraint
solving paradigm—Iocal search—aiming at the ease of use.



Problem

CAC softwares extended with constraints work in black box: one
solution gets out of the box.

But constraints are relations, not functions.

Therefore, a constraint problem can have zero, one or many solutions.

By functionalizing the constraint process, we miss a key point:
Constraints are useful to describe a class of solutions

but how to work with many solutions?



Proposal: Interactivity

Experiment with an interactive constraint score editor.

Bring the composer at the level of the solving process.
He can consciously choose a solution.

Development of an interactive search strategy to navigate in the
solution space.



Proposal: Spacetime programming

Interactivity and search strategies is a deeper problem: constraint solvers
also work in a “black box" mode.

We propose the process calculi spacetime programming.
SP = constraint programming + synchronous paradigm.

Spacetime programming

Synchronous programming for interactive computing.

A search strategy is viewed as a process: abstraction over the
constraint solver.



Menu

» Introduction

» Interactivity in solvers

» Interactivity in CAC

» Conclusion



All-interval series: a MiniZinc model

int: n = 12;
array[l..n] of var 1..n: pitches;
array[l..n—1] of var 1..n — 1: intervals;
constraint forall(i in 1..n — 1)
(intervals [i] = abs(pitches[i+41] — pitches]i]));
constraint alldifferent ( pitches );
constraint alldifferent ( intervals );

solve satisfy;

I I I I I I I I I I I I ]
N | \ | | \
=L n
A B, 7 1.0 1 4 o 1 L T
HES 1/ I r ] I oy I A I ot I el 1 E‘
W = 3 I | P Al I I b1 el L& L
® #d— A L4 - e T



All-interval series: a MiniZinc model

int: n = 12;
array[l..n] of var 1..n: pitches;
array[l..n—1] of var 1..n — 1: intervals;
constraint forall(i in 1..n — 1)
(‘intervals [i] = abs(pitches[i+1] — pitches[i]));
constraint alldifferent ( pitches );
constraint alldifferent ( intervals );

solve satisfy;

10



Synchronous paradigm

Invented in the 80s to deal with reactive system subject to many
(simultaneous) inputs.

Continuous interaction with the environment.

Mainly used in embedded systems.

11



Spacetime execution scheme

The search tree is represented as a queue of nodes.
We feed the program with one node of the tree per instant.

The synchronous program fuels the queue with new nodes.

global
inputs local outputs

synchronous program iy @
spacetime extension Wy

queue
dequeue<' push 0..N

12



Spacetime programming

Syntax

(p.q ...

communication fragment

spacetime Type x = e (variable declaration)
when cond then p end (ask)
X <- e (tell)
x.m(...) (method call)

synchronous fragment
par p || g end (parallel composition)
p i q (sequential composition)
suspend when cond in p end (suspension)
loop p end (infinite loop)
pause (delay)

search tree fragment
space p end (branch creation)
prune (branch pruning)

13



Spacetime attribute

Problem
How to differentiate between variables in internal/global state and those

onto the queue?

We use a spacetime attribute to situate a variable in space and time.
single_space: variable global to the search tree.
single_time: variable local to one instant.
world_line: backtrackable variable in the queue of nodes.

14



Menu

» Interactivity in CAC

15



Score editor: overview

editor circulo X editor circule X

T Fontsie  Staff Approx  Zoom

<

Constraint solving zone for the interactions with the composer.

16



A first interactive strategy

The strategy usually implemented in CAC with constraints: stop at each
solution. In practice: click on “space” to jump to the next solution.

class EachSolution {
world_line VStore domains = bot;
world_line CStore constraints = bot;
proc stop__at_solution =
loop
par
|| when domains |= constraints then stop end
|| pause
end
end




Interaction with the composer

The composer interacts with the search in-between instants.
The spacetime attributes enable interactions with the search in two main
ways: globally or only for the current search path.

class PSolver {

world_line CStore constraints = bot;
single_space CStore cpersistent = bot;

18



Lazily navigating the solution space

The next two scores represent a choice between §D and £G on the sixth
note:

SubSolver<RBinary, Model> left = new SubSolver();
SubSolver<Binary, Model> right = new SubSolver();
single_time L<Boolean> choice = bot;
choice <- top;
par
|| suspend when choice |= true then right.search() end
|| suspend when choice |= false then left .search() end
end
19



Menu

» Conclusion

20



Constraints in music

From a computer scientist perspective

Probably not for generating music: machine learning methods do it
better.

Reasoning on a class of scores satisfying some properties.
Example: we are not forced to write a particular pitch but a class of
pitches satisfying some rules.

Constraints do not force the composer to make any choice!

21



Conclusion

Constraints are relational: interactive search helps to use them in this
way.

To program interactive search strategies, we use spacetime
programming.

Future work

Current prototype with AlS only; enabling any MiniZinc model.

This would allow composers to try the system and to develop more
strategies.

() sgithub. com/ptal/bonsai

Stay tuned!
ay tune github.com/ptal/repmus

22


github.com/ptal/bonsai
github.com/ptal/repmus

Thank you for your attention.

-
2

s

github.com/ptal/bonsai

)
Stay tuned! github.com/ptal/repmus

23


github.com/ptal/bonsai
github.com/ptal/repmus

	Introduction
	Interactivity in solvers
	Interactivity in CAC
	Conclusion

